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Review 

THEORETICAL APPROACHES TO 
THERMAL CONDUCTIVITY IN LIQUIDS 

D. M. H E Y E S  and N. H. MARCHb 

“Departrnent of Chernistry. Uniorrsity of Surrey .  
Guildfbrri GU2 S X H ,  England cind 

“Oxford Uniwrs i iy .  Oxford, Enqlcrnd 

We first review analytical and computer modelling approaches to heat conduction in 
insulating liquids. Thermal conductivity i. can be calciilated by approximate analytic 
theory, and also by molecular simulation which solves the many-body problem for 
molecules interacting through specific intcractions. Equilibrium and non-equilibrium 
molecular dynamics, NEMD, techniques are now available that enable i. to be com- 
puted for single-component monatomic and molecular liquids, as well as their mixtures. 
For mixtures, i. can be determined from the distinct Onsager coefficients, individually 
computed using equilibrium molecular dynamics. Electronic contributions to the ther- 
mal conductivity of liquid metals are then considered. by invoking the Wiedemann- 
Franz Law relating thermal and electrical transport. 

1. INTRODUCTION 

Of all the transport coefficients in condensed matter, the thermal 
conductivity has a number of notable features that distinguish it from 
the others, such as, self-diffusion and viscosity. Unlike these other two, 
the thermal conductivity does not exhibit any major discontinuity at  
the liquid solid phase boundary. Also, in contrast, there can be a 
substantial electronic contribution in the case of metallic systems (see 
section 4 below). The thermal conductivity is defined (in the linear 
response limit) by Fourier’s law, 
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66 D. M. HEYES AND N. H. MARCH 

where JQ is the local flux J Q  and V T is the corresponding temperature 
gradient. Strictly, i is a second rank tensor, which is important when 
considering anisotropic solids and liquids (e. g., liquid crystals). Here 
however, we will confine our discussion to liquids which over time 
have no preferred direction for the molecules, so-called ‘isotropic’ 
liquids. In this case, the thermal conductivity is a scalar, 1. 

Accurate theoretical predictions of transport coefficients are still 
lacking; no convergent perturbation theory of transport coefficients 
has emerged, and currently we rely to a large extent on computer 
simulation methods although the transport coefficients do appear to 
obey a corresponding states behaviour which correlates reasonably 
well with the excess entropy of the liquid’.) The heat flux, and hence 
the thermal conductivity, has components that are purely kinetic and 
those that represent energy transfer by virtue of the interaction forces, 
and are defineable solely in terms of the microscopic details of the 
molecular coordinates, velocities and the force field between them. 
Molecular Dynamics, MD, computer simulation solves the many- 
body problem for a representative region of the liquid by numerical 
integration of the equations of motion of the interacting molecules, 
and can be used to calculate the heat flux by employing appropriate 
microscopic expressions. The MD technique has been used to calcu- 
late the thermal conductivity of a range of model molecular systems. 
This has proved to be more complicated than for other transport 
coefficients, and for mixtures it is only recently that a consensus is 
emerging about the correct formulae to employ as microscopic defini- 
tions for the relevant fluxes. In this section, the progress that has been 
made at computing the thermal conductivity of single component and 
liquid mixtures by Molecular Dynamics computer simulation is re- 
viewed. We will first consider single component monatomic and mol- 
ecular liquids. Then applications to mixtures of monatomic liquids 
will be discussed. 

2. MOLECULAR DYNAMICS 

Two classes of Molecular Dynamics, MD, method have been pro- 
posed to compute the thermal conductivity for an arbitrary molecular 
system, specified solely in terms of the pair potentials and imposed 
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T H E R M A L  CONDUCTION IN LIQUIDS 67 

thermodynamic conditions. The approaches that can be adopted are 
to use either equilibrium Molecular Dynamics, in which the molecules 
are free to interact in the absence of any perturbing field (e.y., tem- 
perature gradient). The other approach is to use a non-equilibrium 
Molecular Dynamics (NEMD) method, which is closer in spirit to the 
machine implementation of Fourier's Law. In the infinitesimal applied 
field limit, the equilibrium Green-Kubo metod can be used in which 
the 1, is related to the integral of the correlation function of fluctu- 
ations in the heat-flux vector: 

For an atomic fluid consisting of N molecules in volume V ,  and con- 
sidering the x-component of the heat flux, we have 

where 

1 1 
e, = -mi 1:; + - 2 4.. 

2 -  2ji i  l J  
(4) 

which is the energy of a molecule index i in the fluid. The Green-Kubo 
approach has been applied to Lennard-Jones liquids by a number of 
groups since the pioneering simulations of Levesque, Verlet and Kur- 
kijarvi,2 see for another e ~ a m p l e . ~  This treatment has been generalised 
for a single component molecular fluid consisting of N molecules con- 
taining n interaction sites, a on molecule i and p on molecule,j. 

where ui is the velocity of the centre of mass of the molecule, 4iajll is 
the p a 6  potential between site CI in molecule i and site /) in mo1ecule.j 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



68 D. M. HEYES AND N. H .  MARCH 

separated by L ~ ~ ~ ~ .  The total energy of molecule i is em, 

Simulations of the thermal conductivity of compact near-spherical 
molecules such as S F ,  and C F ,  have been carried out using this 
formula4. Where rigid body motion is integrated by for example quat- 
ernions then5. 

where i and j refer to centre of mass quantities,fij is the force between 
centres of mass of molecules i and . j ,  is the principle angular 
velocity of molecule i and si is the corresponding principle torque. 

It has proved rather diffcult to devise rigorous non-equilibrium 
Molecular Dynamics equations of motion to compute thermal con- 
ductivity. Thermal conductivity is perhaps one of the most straightfor- 
ward of transport coefficients to measure experimentally, by direct 
application of Fourier’s law. This approach has also been mimicked in 
molecular simulation, by sandwiching a M D  system which is periodic 
in the x and y directions only, and of finite extent in the z direction, 
between two ‘thermal’ walls at different temperature.6 The problem 
with this approach, as with all such “wall-based” methods for trans- 
port coefficients, is that the liquid becomes spatially inhomogeneous 
(the molecules form layers against the wall) and very large tempera- 
ture gradients have to be imposed on the system. The results obtained 
from such a study are therefore difficult to interpret, as the modelled 
system exists in different thermodynamic states within the simulation 
cell. These techniques also tend to be statistically quite poor. Never- 
theless, thermal wall Molecular Dynamics techniques have proved 
useful in investigating other non-equilibrium thermal phenomena of 
importance such as Rayleigh-Bernard convecton rolls7. 

It is not possible to have a constant temperature gradient across a 
simulation cell, and also be compatible with periodic boundary condi- 
tions. The nearest that can be achieved is to impose a profile (e.g., an 
oscillatory temperature profile) in the cell, with a finite wave vector 
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THERMAL CONDUCTION IN LIQUIDS 69 

compatible with the periodic boundary conditions. (The Lees-Edwards 
periodic boundary conditions is a striking exception to this rule, in 
which for shear viscosity, a shear gradient at zero wavevector is intro- 
duced to the contents of a MD cell that is compatible with periodic 
boundary conditions8.) One novel procedure that has been applied to 
Lennard-Jones and ionic systems involves dividing the MD cell into a 
number of layers (e.y., 32) parallel to one of its faces. One layer at each 
end of the cell is heated and two layers in the middle are used as heat 
sinks, both by appropriate velocity scaling. Therefore two heat fluxes in 
opposite direction are induced towards the centre of the cell9 The 
thermal conductivity can then be obtained by direct application of 
Fourier’s Law in the two regions. 

Evans” and Gillan” devised ingenious synthetic NEMD equations 
of motion which are free of gradients. (An earlier method, which em- 
ployed an external field perturbation method invented by Ciccotti, 
Jacucci and McDonald contains some of the same underlying ideasI2.) 
The theory for this approach is described below, using the more recent 
notation and formalism of Evans and Morriss, who extended the 
Green-Kubo formula to apply to non-equilibrium  system^.'^ 

Consider an equilibrium fluid that has a homogeneous field im- 
posed on it  at time t = 0. Therefore at t = 0 the system goes from being 
in an equilibrium state to a non-equilibrium one. Consider an arbit- 
rary time dependent property of the system, B(t). (We will assume that 
the equilibrium time average, ( B > = 0, which is the case for the heat 
flux, to simplify the formulae; although the more general case of 
( B )  # 0 can also be treated with minor modifications of the formulae 
below). If an external field, - F ,  is imposed at time t=0,  then the 
response of B(t )  is given by 

where the time derivative of the Hamiltionian (‘dissipative heat’) is 
identified with its phenomenological form of a f lux  time times a per- 
turbing thermodynamic force i z . ,  fi = -JaI;r. Here J a  is the dissi- 
pative flux. In the case of thermal conductivity, the fictitious force or 
“heat” field, - F,, replaces the temperature gradient but still induces an 
additional heat flux, A J Q ( t )  in the system. Setting B = J e  and substitu- 
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70 D. M .  HEYES AND N. H.  MARCH 

ting for H in Eq. (8) gives the so-called transient time correlation 
function formula for the thermal conductivity at arbitrary applied field. 
We then have, 

In order to satisfy fi= - JQ.F ,  at the microscopic level, 
equations of motion for a monatomic system are, 

. P i  r .  = = 
-‘ m 

N 

pi = F i  + (ei - ( e ) )  F ,  - fijrij.Fe - -  - 
j =  I 

N - 1  N 

+ C j : . r  ... F / 2 N  -upi 
-1J -11  -e - 

j = l  k = j + l  

where F i  is the instantaneous total force on particle i,(e)is 
age of the instantaneous ei taken over all molecules in the system, and 
as before Lj is the pair force between molecules i and , j .  In order to 
prevent an increasing rise in the temperature of the system arising 
from the imposed heat force, it is necessary to apply a thermostattic 
control-in this case in the form a gaussian multiplier applied to the 
perculiar momentum, Pi. The gaussian thermostat multiplier, CI, in the 
above formula is evaluated each time step to maintain a constant 
temperature, and is calculated from these equations of motion and 
setting H = 0. 

N N 

N - 1  N N 

(9) 

then the 

(10) 

the aver- 

These equations of motion conserve momentum of the MD cell and 
are homogeneous. Through the (ei - (e))  F ,  term they introduce a - 
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THERMAL CONDUCTION IN LIQUIDS 71 

heat current in the periodic system, as the molecules with greater 
energy than the mean ( e )  will be driven in the opposite direction to 
those molecules which instantaneously have an energy lower than 
the mean. The thermal conductivity is obtained by extrapolation of 
the field dependent thermal conductivity, 2(Fe) ,  to zero F , .  For most 
systems considered the extrapolation is quite close to being linear. 
The major disadvantage of the NEMD approach in general is that, if 
linear response transport coefficients are of sole interest, several 
simulations at different applied field strengths need to be carried out 
in order to perform the desired extrapolation to zero heat field. The 
simulations carried out at finite heat field, F,, have no experimental 
analogue, as would those states generated from a finite temperature 
gradient, for example. The homogeneous NEMD thermal conductiv- 
ity equations of motion have been generalised to apply to rigid 
molecular liquids [ S ] .  In contrast to the corresponding NEMD pro- 
cedure for shear viscosity, only the limit of zero applied shear has 
any physical significance for thermal conductivity. In the case of 
shear viscosity the finite field corresponds to finite shear rate, which 
is experimentally realisable, and can lead to the important phenom- 
enon of non-Newtonian flow-an effect very much apparent in real 
systems. 

Away from equilibrium and the linear response regime, the decoup- 
ling of transport co-efficients ( L J . ~ . ,  shear viscosity and thermal conduc- 
tivity) no longer holds. Simulations of the thermal conductivity of a 
strongly sheared Lennard-Jones fluid reveal that the symmetry break- 
ing of the shear field cause (a) the diagonal elements of the thermal 
conductivity 3 x 3 tensor to start to become unequal at a reduced 
shear rate of - l a " ~ " ~ n z - ' / * ,  and (b) the appearance of nonzero 
off-diagonal elements in the thermal conductivity tensor'". 

3. MULTICOMPONENT SYSTEMS 

For a multicomponent system a number of interesting so-called 'ther- 
modiffusion' effects can occur which have no analogue in the single 
component systems; and which have a well defined relationship to the 
thermal conductivity of the mixture. A temperature gradient will cause 
a relative flow of the different molecules in the mixture in opposite 
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72 D. M. HEYES A N D  N. H. MARCH 

directions. Consequently it is by no means a trivial exercise to obtain 
the thermal conductivity of liquid mixtures by Molecular Dynamics, 
and there are still some unresolved issues pertaining to the definitions 
of the matter and heat fluxes required in the formulae and relating 
these to what are actually measured in experiment. A number of 
additional transport coefficients are required to characterise multi- 
component fluid systems. For clarity, consider a binary mixture where 
there are N ,  molecules of species type u each with a molecular mass 
mu. When a concentration gradient is imposed on an isothermal fluid 
mixture, a temperature gradient will develop as interdiffusion occurs. 
This is called the Dufour or diffusion-thermo effect. It is rather hard 
to measure for liquids, however; but there is more success for the 
reverse process, known as the Soret or thermal-diffusion effect. Here a 
temperature gradient creates a species concentration gradient, and can 
be specified by the following equation, 

where .xl is the mass fraction of species 1, i.e., 

and k ,  is known as the thermal-diffusion coefficient. Let the mass flux 
of species, v be - J ,  thenI5.l6 

where - u is the barycentric velocity (the velocity of the centre of mass), 

N 0 

and 
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THERMAL CONDUCTION I N  LIQUIDS 73 

u,. is the centre-of-mass velocity of species u. If p is the total mass 
density then J ,  = pxl,( u,. - u). The Irving and Kirkwood microscopic 
expression for the heatflux-in a multicomponent mixture, V J ,  is,' ' 
- 

Considering that we have a binary mixture, the mass currents of the 
two species are related in the Molecular dynamics ensemble, i .e.,  
J ,  = - J ,  then only one need be consideredI7. Linearised irreversible 
thermodjinamics relates flows to driving forces through the so-called 
Onsager phenomenological coefficients, ' 
- 

where the gradients X,are, - 

1 
T -  x, = -- V,(pl - p 2 )  - 

where pc is the chemical potential of species u. In the absence of a 
temperature gradient, Fick's Law gives another expression for J , ,  - 

where Dl is the bulk diffusion coefficient of species 1 relative to the 
barycentric centre (centre-of-mass frame) which using the Gibbs- 
Duhem equation gives, 
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14 D. M. HEYES AND N. H. MARCH 

In the experimental fixed volume frame D ,  and D ,  are trivially related 
to the mutual diffusion coefficient D 

D = p u 2 D 1  = puI D ,  (22) 

where u, is the partial specific volume of species u. The above defini- 
tions for the mass and heat fluxes are not identical to those measured 
experimentally; however the evidence from Green-Kubo simulations 
of the Onsager coefficients performed by MacGowan is that the dif- 
ferences are rather small and can be ignored for practical purposes.” 
The Onsager coefficients La, can be computed by Molecular Dynami- 
cs simulations using the following Green-Kubo relationships, 

T I  r* 

The cross coefficient, L, ,  characterises the thermal diffusion or Soret 
effect. Combination of Eq. (12) with Eq. (20) gives for the Soret coeffi- 
cient. 

The thermal conductivity of the mixture, defined using Fourier’s Law 
JQ = - AVTcan be obtained from Eq. (18) using L,,  = LQ,(Onsager’s 
symmetryreciprocal relationship) and - J ,  = 0 then, 

Therefore machine simulation of the Lfrom Eq. (23) yields the thermal 
conductivity when substituted in Eq. (25). 
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T H E R M A L  CONDUCTION I N  LIQUIDS 75 

The Onsager coefficients can also be computed using NEMD just 
as for the thermal conductivity of the single-component fluid, using 
appropriately generalized synthetic homogeneous equations of motion 
as described in refs 15 and 16. 

4. ELECTRONIC CONTRIBUTION TO THERMAL 
CONDUCTIVITY OF LIQUID METALS 

As mentioned in the Introduction, there can be important electronic 
contributions to thermal conduction in liquid metals such as Na or 
Cu. These are presently best approached, at least near the freezing 
point, by calculating first the electrical conductivity CJ, and then invok- 
ing the wiedemann-Franz Law relating CJ to the (electronic contribu- 
tion to) thermal conductivity 1: We shall therefore briefly summarize 
the underlying ideas below. 

4.1. Wiedemann-Franz Law 

The most elementary approach to the Wiedemann-Franz Law in- 
volves three steps (a)-(c). First, one adapts the kinetic theory of heat 
conduction in gases appropriately: step (a). Then one uses the usual 
formula for the electrical conductivity 0, namely CJ = ne2 7 / m ,  with n 
the electron number density, m the electronic mass and 7 the usual 
relaxation time. The third essential step (c) is to assume that the two 
relaxation times entering steps (a) and (b) are equal. Then one finds 
the relation (see also March”) 

i, 
- = L,  
CJT 

Here the constant L is the so-called Lorenz number. A semiclassical 
treatment leads to the value 

.=?(&) 2 

3 e  
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16 D . M .  HEYES AND N . H .  MARCH 

which has the numerical magnitude 2.45 x J 2 / C 2 K Z .  Experimen- 
tally (see Table 1) the Lorenz number for the liquid alkali metals is 
between 2.1 and 2.6 x lo-'. 

Combining eqn (26) with a theory of the electrical resistivity p = l/a 
leads to a theoretical estimate of the (dominant) electronic contribu- 
tion to R in a liquid metal. For instance, for simple s-p liquid metals 
near freezing, the nearly free electron theory gives the explicit for- 
mula20~2'  

with k ,  is the Fermi wave number. The microscopic formula (28) of 
the nearly free electron (NFE) theory involves knowledge not only of 
the liquid structure factor S(q)  but also of the electron-ion interaction 
&(q). Pastore et alz2 have shown that eqn (28) is in excellent agree- 
mental with experiment for the liquid alkali metals near freezing. 

Evidently, using their calculations, the thermal conductivity can be 
calculated from the Wiedemann-Franz Law (26). 

March and TosiZ3 have also related the thermal and electrical con- 
ductivities of liquid metals near freezing to the shear viscosity 7. Their 
analysis makes use of the earlier work of TosiZ4 who used ion-electron 
plasma theory to calculate the (longitudinal) viscosity of the alkali 
metals near the freezing point. The result of March and T ~ s i ~ ~  is that 
the thermal conductivity R, at the melting temperature T, is related to 

TABLEI 
variety of liquid metals. 

Lorenz numbers L x  lo* in units of W K 2  for a 

Metal L x lo8 Metal L x lo8 Metal L x 10' 

L, 2.6 Pb 2.4 Ta  2.4 
Na 2.2 Sb 2.6 Re 1.75 
K 2.1 Bi 2.5 0 s  1.75 
c s  2.4 Ti 2.9 Pt 2.3 
Cd 2.5 Zr 2.25 In 2.7 
Hg 2.75 Hf 2.7 La 2.65 
Zn 3.2 MO 2.6 Ce 2.56 
Al 2.4 W 2.5 Pr  2.89 
Ga 2.07 Ru 2.45 Nd 2.21 
TI 3.2 I r  1.95 Gd 1.83 
Sn 2.9 Nb 2.6 Dy 2.34 
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THERMAL CONDUCTION IN LIQUIDS 71 

electrical resistivity p ,  and shear viscosity ‘1, at T, by 

where A = 5.1 x Here M i  and ni denote the ion mass and ionic 
number density respectively. 

Having invoked the static structure factor S(q)  in the NFE formula 
(28) for electrical resistivity, we shall below consider its dynamical 
generalization S(q,  (0) such that 

in relation to thermal conductivity. Though the work below is posed 
in terms of liquid metals, the argument in the hydrodynamic limit 
outlined is immediately relevant also to insulating liquids. Of course, 
the appropriate thermal conductivity must be used in the two classes 
of liquids considered in detail above. 

5. INFLUENCE OF THERMAL CONDUCTION ON 
NEUTRON DIFFRACTION 

Since thermal conduction is a transport property, it enters the equa- 
tions of hydrodynamics for all liquids, and in particular for a liquid 
metal. Following the discussion of insulating multicomponent liquids 
above, i t  is natural also to refer below to two-component liquid metal 
alloys. 

5.1. Dynamical structure factor 

As introduced above, S(q ,  w), introduced into the theory of liquids by 
Van Hove25, has the physical meaning that it represents the propabil- 
ity that a neutron incident on the liquid will transfer momentum hq 
and energy hw to the liquid. One immediate property of the dynami- 
cal structure factor S ( q ,  w )  is that, when integrated over all energy 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



78 D . M .  HEYES AND N.H.  MARCH 

transfers, the static structure factor S(q) is regained, as set out in eqn 
(30). 

We referred above already to the hydrodynamic regime. Then the 
hydrodynamic equations of a liquid, in linearized form, can be applied 
to set up the form of S(q ,o ) ,  in of course the appropriate regime for 
which the hydrodynamic equations are valid. These equations, in fact, 
apply in the long wavelength and low frequency limits, or equivalent- 
ly, in the Fourier transform variables q-+r,w+t, the limit of large I’ 

and long time t. 
Following the pioneering work of Landau and Placzek,2“ the usual 

procedure in such a calculation is to use the linearized hydrodynamic 
equations of irreversible theromodynamics to describe the relaxation 
in time of relevant fluctuating thermodynamic variables in the liquid: 
this procedure is described, for instance by Mountain.27 

Though a little more detail will be recorded below for liquid metal 
alloys, let us summarize here the main physical content emerging from 
such an approach. There are basically three peaks evident in S ( q ,  o) as 
a function of angular frequency w. The central (w=0)  component 
(Rayleigh peak) is found to consist of the sum of two Lorentzians, the 
width of one of these being controlled largely by thermal conduction. 
There are also two ‘Doppler-shifted’ peaks, referred to as Brillouin 
components, centred at frequencies w = C,q where Co is the adiabatic 
speed of sound given by 

where S is the entropy. These peaks arise from sound propagation in 
opposite directions (for a given wave vector q )  and their width, having 
the form q2,  turns out to be controlled by acoustic attenuation (see 
also below). It is important to note that the ratio of the integrated 
intensity (I,) of the Rayleigh components in S(q,w) to that of the 
doublet Brillouin side peaks (21,) is quite generally given by 

The generalization of this result to liquid metal alloys in which there 
are size differences between the two components will be treated later. 

There are also ‘non-Lorentzian’ “parts” in S(q,  w), though these 
make no contribution to the integrated intensity and, usually, only a 
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THERMAL CONDUCTION IN LIQUIDS 19 

relatively small contribution to the intensity distribution. However, if 
r q/C, is not much less than unity, they can markedly affect the 
position and shape of the Brillouin peaks in S(q, o). 

6. BINARY LIQUID METAL ALLOYS 

Turning from pure metals to binary liquid alloys, we note first that 
Bhatia and Thornton2* (1970) introduced number-concentration (N- 
C) dynamical structure factors S,,(4, w), S,,q, w )  and S,,(q, o), to 
describe the structural aspects of scattering processes in such alloys. 

6.1. Role of thermal conduction in neutron scattering 

The aim below is to discuss the hydrodynamic limit of long wave- 
length and low frequency of the N-C dynamical structure factors of 
such a liquid alloy. This follows the approach of Bhatia, et ~ 2 1 , ~ ~  who 
made extensive use of the earlier study of Cohen, et These workers 
gave results for correlations between mass-density and mass-concentra- 
tion. Let us first consider S,,(q,w). If we take the limit of a dilute alloy 
such that the concentration c goes to zero, then S,,(q,o) becomes the 
dynamical structure factor of pure liquid metal discussed above. Paral- 
leling the discussion of S(q, w), the Rayleigh component in S,,(q, o) is 
again found to be the sum of two Lorentzians. As before, the width of 
one Lorentzian is largely controlled by thermal conduction: the other 
by mutual diffusion. The two Doppler shifted (Brillouin) components 
are largely as in the one-component case, speaking in general terms (see 
Bhatia, et for fuller details of S,, (q,w) in the hydrodynamic re- 
gime). It is worth noting that eqn. (31) for the ratio of the ratio of the 
integrated intensity ( I , )  of the Rayleigh components in S,, (4, w)  to that 
of the doublet Brillouin side peaks ( 2 1 , )  is modified from he result of 
eqn. (31) Though still proportional to ( y  - l), with y of course, the 
specific heat ratio at the particular concentration considered in the 
liquid alloy, there is a multiplying factor of the form (1 + constant d2), 
where 6 is the size difference of the two components in the alloy: 
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Here u, = [dV/aN] ,~T , ,~ , (~#  a) denotes the partial molar volume per 
atom of species a, while u, the mean molar volume per atom is given 
by 

=cu,  +(1  - c ) u 2  
P.T,c  

(33) 

Of course, in the dilute alloy limit c tends to zero, whereas S,, tends 
to the one-component S(q ,o ) ,  S,, and S,, tend to zero. These latter 
two quantities are therefore crucially about the alloy at finite concen- 
tration c. Let us write out shape of S,,, without going into full details; 
(for these, see Bhatia et ~ l ) . ’ ~  It is such that 

In this general expression, the constants are all known in terms of 
macroscopic constants, both thermodynamic and irreversible trans- 
port coefficients being involved. The two Lorentzians (terms involving 
K ,  and K 2 )  primarily arise in the number-concentration structure 
factor S,, (4,  w)  respectively from diffusive processes and the coupling 
between this type of mode and the thermal conductive mode. If this 
coupling is zero, then the latter component is no longer present and 
the width of the remaining Lorentzian is simply Dq2, where D is the 
coefficient of mutual diffusion. 

The concentration-concentration structure factor has a central role 
in understanding the thermodynamic properties of liquid binary 
alloys, when integrated over all energy transfers. As to its frequency 
dependence, this again follows from the linearized hydrodynamic 
equations and has the form of the sum of two Lorentzians: 

S,,(q, 0) = - + K442 1 ( 3 5 )  
N k B T [  2712 w 2  K 3 q 2  + x2q4 w 2  + Y244 
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These two components behave in a similar manner to the Lorentzians 
in S,,(y,to). The quantity Z appearing in eqn ( 3 5 )  is connected with 
the Gibbs free energy G of the liquid alloy by 

1’. I . N  

6.2. Thermal conduction and ultrasonic absorption 

The way in which thermal conduction affects sound wave attenuation 
in liquid metal alloys will now be considered briefly. Specifically, the 
width, Tq’, of the Brillouin components in the number-number dy- 
namical structure factor S, , (q ,  w )  is related to the acoustic attenuation 
in the liquid. In particular, the amplitude attenuation per wavelength, 
x ,  is given by 

(37) 
x n(i + 4/3q) n(y - 1)nM 
(U p c ;  + P G C ,  +[:ID - - - 

where 

The three terms appearing in the last part of eqn (37) come from (i) 
bulk (i) and shear ( q )  viscosities, (ii) attenuation caused by thermal 
conductivity, out main interest here, while the last term gives the 
contribution due to  diffusion. Bhatia er al”treat the limiting case of 
eqn. (24) for an ideal gas mixture. Here there is no size effect, so 0 = 0, 
the coefficient of thermal expansion r ,  = 1/T while the isothermal 
compressibility K, .  = l/P, a s  follows from the ideal gas equation of 
state PI/= Nk,T From the Gibbs free energy in this ideal gas model, 
it is readily, shown that 2 is given by 

Z = Nk,T/c(I - c). (39) 

Hence, for the last term one readily finds 
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where = k, /c( l  - c), the thermal diffusion factor, has been introduc- 
ed. This formula has been derived previously from kinetic theory 
calculations and has been verified experimentally for noble gas mix- 
tures of various compositions. For a fuller discussion of ultrasonic 
absorption, and in particular the role of thermal conduction, the 
reader may consult the book by Bhatia.30 

6. SUMMARY 

To summarize the part of this review on insulating liquids, the mol- 
ecular simulation of thermal conductivity of arbitrary mixtures of 
molecular liquids interacting via pair interactions is by now a routine 
procedure. It is appropriate therefore to ask at this stage as to the 
benefits of these simulations. As yet, these techniques have not been 
applied to very many chemical systems. Nevertheless, the simulations 
carried out to date have verified that the Green-Kubo (‘equilibrium’) 
and homogeneous heat field non-equilibrium MD techniques do give 
the same results within the statistical uncertainty of the simulations. 
These methods will undoubtedly be used in the future to study the 
dependence of thermal conductivity on molecular structure and state 
point for many different classes of system. 

Turning to liquid metals, i t  has been emphasized here that, to 
date, the dominant electronic contribution to thermal conduction 
has been approached largely via electrical conductivity clacuations, 
plus the Wiedemann-Franz Law. However, i t  has to  be stressed 
that this Law is approximate, and at times large deviations from i t  
can occur. Therefore most work to date has focussed on simple s-p 
metals near freezing. But we already know that even supposedly 
simple metals like the liquid alkalis behave very differently from the 
NFE theory as they are taken up the liquid-vapour coexistence 
curve towards the critical point. There is therefore a while area 
here, both in pure liquid metals and also in liquid metal alloys in 
which further work is called for, both analytic theory and computer 
modelling. But we should also stress the need for further experi- 
ments, both macroscopic transport measurements and also neutron 
diffraction studies. 
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